

An Energy Efficiency Workshop & Exposition

Palm Springs, California

A Sustainable Facility for a Sustainable Agency

Robert J. Gries, P.E., CCM, PMP

NOAA's Mission

To describe and predict changes in the Earth's environment, and conserve and wisely manage the Nation's coastal and marine resources

Need for the Project

- Inadequate facility to support legislatively mandated fisheries management
- Relieve overcrowding and accommodate approved project growth
- Interrelated functions need to be consolidated to optimize performance
- Not compliant with ADA or UFAS requirements or current building codes

Site Constraints

Initial Concept Design

Organizational Challenges

- Management's unfamiliarity with various Executive Orders, design concepts, etc.
- Concerns regarding increased project costs with limited, if any, benefits
- No funding to support/evaluate initiatives (except at DOC level)
- Misperceptions about lack of quality control if implemented

Design Phase Objectives

- Definition of "World Class Facility" & how it can be accomplished within the established budget
- □ Degree of incorporating Sustainable Design,
 i.e., LEED Building GoldTM rating
- Development & implementation of an energy budget for design
- Degree of specifying Energy Star® equipment and materials

HLRP Team

Concept Modeling

Concept Modeling

Typical Floor Plan Concept

Courtesy of Ferraro Choi and Associates

Envelope Development – East

Courtesy of Ferraro Choi and Associates

Envelope Development – East

Courtesy of Ferraro Choi and Associates

Final Design – East

100% Synergy of Design

Electrical

- One Voltage System
- Daylighting
- Lumen Package
- Appliance Loads

Air Conditioning

- Radiant Cooling
- Higher Chilled Water Temperatures
- DessicantDehumidification
- Solar Regeneration
- □ 100% Outside Air
- Energy Recovery

Electrical Engineering

- Ambient/Task Lighting
- International Lighting Standards
- Lighting Control
- Lumen/Lamp Package
- Single Voltage System
- Modular Wiring

Daylight Modeling

Courtesy of Lincolne Scott

Solar Orientation

- representation of the solar path and its relation to the orientation of a window or shading device
 - SolrPath: Windows based program developed by the Energy Systems Laboratory at Texas A&M University

Shade Modeling

- Interactive shading design
- Accurately size and position overhangs, shading devices and louvers easily
 - Suntect: Windows based program (now *The Solar Tool*) developed by Dr. Andrew Marsh

Thermal Comfort

Courtesy of Lincolne Scott

Thermal Comfort

- Predicted Mean Vote (PMV): thermal scale that calculates the Predicted Percentage of Dissatisfied people (PPD)
- Originally developed by Dr. P. Ole Fanger and later adopted as an ISO standard
- PMVTool: Windows based program (now *The Psycho Tool*) developed by Dr. Andrew Marsh

Why Radiant Cooling?

- No draughts even in rooms with high heat gains
- Radiant heat exchange reduces the degree of convective cooling
- Improved air quality (i.e., 100% outside air)
- Highest possible human comfort = Improved productivity
- Reduced noise levels in occupied spaces
- Substantially reduced maintenance requirements due to absence of moving parts

Typical Chilled Ceiling Tile

- Control cooling loads by the use of water instead of air
- Works on principles of both radiation and convection
- More cost effective, clean, and natural indoor climate

Dessicant Dehumidification

Why is it important to low energy design?

- It allows the use of waste heat or solar energy.
- It allows dehumidification without the wastes of energy employed by conventional systems.
- It separates relative humidity from temperature and a higher thermal comfort can be achieved.
- When used effectively, it can result in significant energy and cost savings.

DOE-2.2 Results

- □ ASHRAE 1,156,000 kWh/yr
- Design 504,000 kWh/yr
- □ Percent Savings = 44%

Results

- FY 2002 Federal Energy Saver Showcase Award
- □ Progressing towards the LEED Building Gold[™] rating
 - > 1st federal laboratory
 - 1st facility in Hawaii
- Progressing towards Energy Star® building designation
- Potential energy rebates from HECO

Lessons Learned

- Every project needs a champion
- Clearly communicate the goals & objectives and obtain sponsor's approval
- Many obstacles and challenges to overcome – both externally & internally
- Delayed gratification aesthetically appealing, energy efficient facility